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ABSTRACT

Objective: Transgender people face substantial mental health disparities, and this population’s emotional well-

being can be particularly volatile during gender transition. Understanding gender transition sentiment patterns

can positively impact transgender people by enabling them to anticipate, and put support in place for, particu-

larly difficult time periods. Yet, tracking sentiment over time throughout gender transition is challenging using

traditional research methods. This study’s objective was to use social media data to understand average gender

transition sentiment patterns.

Materials and Methods: Computational sentiment analysis and statistics were used to analyze 41 066 posts

from 240 Tumblr transition blogs (online spaces where transgender people document gender transitions) to un-

derstand sentiment patterns over time and quantify relationships between transgender identity disclosures,

sentiment, and social support.

Results: Findings suggest that sentiment increases over time on average throughout gender transition, particu-

larly when people receive supportive responses to transgender identity disclosures. However, after disclosures

to family members, people experienced temporary increased negative sentiment, followed by increased posi-

tive sentiment in the long term. After transgender identity disclosures on Facebook, an important means of

mass disclosure, those with supportive networks experienced increased positive sentiment.

Conclusions: With foreknowledge of sentiment patterns likely to occur during gender transition, transgender people

and their mental healthcare professionals can prepare with proper support in place throughout the gender transition

process. Social media are a novel data source for understanding transgender people’s sentiment patterns, which can

help reduce mental health disparities for this marginalized population during a particularly difficult time.
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INTRODUCTION

Transgender people (those whose gender differs from the gender

they were assigned at birth,1 including nonbinary people) face sub-

stantial mental health disparities as compared with the general pop-

ulation.2,3 In a recent survey of U.S. transgender people, 39% of

respondents reported experiencing serious psychological distress in

the past month, a figure approximately 8 times higher than the gen-

eral population.2 Transgender people face unique stressors and vul-

nerabilities including pervasive discrimination, prejudice, rejection,

and violence.2,4–8

The research literature overwhelmingly shows that gender transi-

tion improves transgender people’s well-being.9–13 Yet, the path to

improved well-being is not always direct, as minority stressors—

minority stress is a type of mental distress resulting from stigma,
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prejudice, and other factors specifically related to a minority identi-

ty14,15—can lead to more depression and anxiety during transi-

tion.5,16 Gender transition is particularly volatile because several

effects occur simultaneously: a transition into the gender and iden-

tity that matches one’s internal self clearly has positive mental health

effects. At the same time, as one transitions, they may face discrimi-

nation and harassment, which have negative mental health

effects.2,17

The gender transition process is also a precarious time for trans-

gender people’s mental health because transitioning requires disclos-

ing one’s transgender identity to others.18 Coming out as

transgender can allow access to resources and support,5 but also of-

ten involves communicating sensitive information to people who

may not understand transgender identity and may be discrimina-

tory.19 As such, during transition many transgender people con-

stantly balance visibility with the discriminatory conditions that

may accompany disclosure.19 Given disclosure’s critical role in the

gender transition process, it is an important factor in this study.

The present study’s objective is to further understand patterns in

the complicated interplay between gender transition and well-being

using a new data source: social media. Sentiment over time during

gender transition was examined using computational sentiment analy-

sis of 41 066 posts from 240 transition blogs on the social media site

Tumblr. These are blogs where transgender people document personal

accounts of their experiences. This work highlights how social media

data can be used to understand people’s sentiment over time during

gender transition. Sentiment patterns provide vital information to

help mental health providers and people beginning gender transition

anticipate and put support structures in place for transition’s most dif-

ficult times. With this new understanding of sentiment patterns during

gender transition, steps can be taken to decrease mental health dispar-

ities faced by a substantially marginalized population.

Transgender issues in medical informatics
A small body of previous research has examined transgender issues

in medical and health informatics.20–25 Most relevant to the current

study, Blotner and Rajunov26 described how transgender healthcare

providers can engage with transgender communities using social me-

dia platforms to educate themselves, inform research and medical

practice, and improve healthcare quality. The present study expands

on this work by using social media data to illuminate gender transi-

tion sentiment patterns, which can be of great use to medical infor-

matics researchers and transgender healthcare providers.

Disclosure and social support’s relationships with well-

being
Self-disclosure has been found to lead to improved mental health,

physical health, and self-esteem,27 and is necessary to receive social

support.28 Yet disclosure of stigmatized identities may also increase

anxiety due to the unpredictable responses one may receive.27 The

relationship between disclosure and mental health depends greatly

on the reaction one receives—supportive reactions lead to greater

disclosure benefits.29–31

Social support is widely found to have a moderating effect on the

relationship between transition status and mental health. That is, so-

cial support from one’s network can mitigate the negative effects of

stressors like discrimination and harassment.10,16,32,33 How one’s

audience responds to a transgender identity disclosure can have a

major impact on a transgender person’s well-being and on ongoing

social relationships.34–36 Relationships among transgender identity

disclosure, social support, and sentiment have not yet been exam-

ined using social media data—an important undertaking because so-

cial media is increasingly pervasive in people’s lives.37

Computational text analysis methods
Computational text analysis methods such as sentiment analysis can

be powerful tools for researchers to extract meaning and themes

from large bodies of text.38,39 People who experience more psycho-

logical distress may also be more likely to post depressive content on

social media;40 thus there is an established correlation between men-

tal health and social media content. Researchers have used computa-

tional linguistic techniques like sentiment analysis, sometimes paired

with social media data, to understand social phenomena such as de-

pression,41–44 mental health more broadly,45–47 and even transgen-

der topics.48–50 The present study uses these methods to uncover

sentiment patterns over time during gender transition.

Data source: Tumblr transition blogs
Transition blogs are a genre of Tumblr blog in which people docu-

ment their gender transition. Commonly, these blogs include diary-

like entries discussing social, medical, and legal aspects of transition:

discussion of the coming out process and resulting support or rejec-

tion, physical and mental changes, medical procedures, and name

and document changes. Tumblr was chosen as the data source be-

cause it is a primary space where transgender people wrote lengthy,

meaningful content about their personal experiences and emotions

during transition,51 with the added benefit of being a data source

that is relatively easy for researchers to collect to gain insights into

this population’s sentiment. However, recent policy changes ban-

ning “adult” content have made the site substantially less welcoming

for transgender people, given that transition blogs sometimes in-

clude graphic transition-related content.52

MATERIALS AND METHODS

Methods are summarized in Figure 1. This study was approved by

the University of California, Irvine, Institutional Review Board.

Parts of this work draw from a larger study.53 Some methodological

detail is omitted due to word limit; please see Haimson53 for full

methods.

Data collection
Using Tumblr’s application programming interface (API)54 and the

PyTumblr API client,55 41 066 text or photo caption posts were col-

lected from 240 transition blogs starting with each blog’s first post.

This data collection approach appears to be in line with Tumblr’s API

License Agreement (circa January 2017).59 Data collection and inclu-

sion criteria are detailed in a STROBE (Strengthening the Reporting of

Observational Studies in Epidemiology) diagram60 in Figure 2. Data

collection did not include photos, images, or visual content of any kind.

Measuring sentiment
Computational sentiment analysis was used to measure sentiment in

each blog post. LIWC Linguistic Inquiry Word Count (LIWC) is a

set of lexicons that enables researchers to computationally analyze

people’s feelings and affect via text.56 LIWC positive emotion and

negative emotion measures were assigned to each post and averaged

over time to use as outcome variables in regression models. While

computational sentiment measures have been found to be somewhat
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of a proxy for emotional well-being,39,61 these measures have accu-

racy limitations39,61 and are not a clinical measure of mental health.

A machine learning classifier to detect transgender

identity disclosures
A machine learning classifier was built to detect a particular type of

disclosure: Tumblr posts describing transgender identity disclosures

in other contexts (see Table 1 for example posts). A post counted as

a transgender identity disclosure if it described a disclosure that

seemed to have occurred within 2 weeks prior to the post describing it.

The first step involved building a training set of positive and neg-

ative examples of transgender identity disclosure posts in the data-

set. An iterative approach was used to build a sufficient training set,

which included several rounds of manual coding and machine learn-

ing. To establish interrater reliability, 2 coders (OLH and NA) first

coded 50 posts as either recent transgender identity disclosures or

not, and reached acceptable interrater agreement at a kappa of 0.72.

OLH then coded the remaining training data. The Python

SciKitLearn library62 was used to build the machine learning classi-

fier. The classifier’s features are detailed in Figure 1. Nine machine

learning algorithms were experimented: AdaBoost, decision tree, k-

Table 1. Transgender identity disclosure audiences identified in Tumblr posts

Disclosure Audience Excerpt From Example Post (Support Code) Post Count

Work “As I mentioned the other day, today was the big day for me at work. Mass disclosure that I’m a transgender

woman and would be transitioning at work, right in front of 500 people that I’ve worked with as a male for

15 years.” (support unknown)

77

Stranger/acquaintance “I only see her once a year, at con, for about 7 hours or so total. When I told her I was transitioning (had to use

female ID for badge), she gave me a hug, and said she was so glad that I was happy.” (supportive)

65

Friend “I came out to my best friend tonight. I just basically mentioned it again very vaguely when we went to [restau-

rant] after. . . getting ready for the trip this weekend and I really couldn’t bear to just continue dancing around

it and being so vague when I knew how accepting he would be. So I just told him. Really awesome to the

point that I can’t describe it! He basically told me he has my back continually and if it comes to my worst

case scenario then he will continue to support me and help me out. That’s fucking huge and I can’t really state

how happily excited I am.” (supportive)

57

Extended family “I came out to my extended family yesterday, and I’ve heard back from all but one (the conservative one,

hmmm). And they’re all accepting and supportive!!! This makes me so happy!! Yay!!!!” (supportive)

56

Mom “I came out to my mother today. She cried. And then she told me she didn’t understand why. Then she cried.

Then she told me it was fine as long as I was happy. And then, yes, she cried again. Overall I think it went

well.” (partially supportive)

35

Sibling “I came out to my brother today (he’s fourteen). He was the last important person I had to tell. And he was very

cool with it. I asked him if I felt kind of like a brother to him and he said yes.” (supportive)

29

Dad “Emailed my short coming out note to dad. Hope it goes well.” (support unknown) 28

Facebook “I just came out to my friends on Facebook shit I’m shaking and kinda terrified but also feeling good at the

same time.” (support unknown)

26

School “I came out to my faculty and supervisors at school and this was a bit trickier to do. I decided to wait until right

before the semester started as I felt this was a good time to begin something new. Right before the new year :)

Sometimes it is hard to come out to people professionally because being trans is a very personal matter. You

also never know how anyone in the education system may react. . . In the end the support was even more over-

whelming.” (supportive)

18

Unknown “Well this is the most awkward and awful coming out conversation I’ve ever had. :j” (not supportive) 15

Everyone “So my birthday was yesterday. . . and I came out to everyone!!! It felt wonderful so much lifted off of my

shoulders. I know it’s a long journey but I now know I have a lot more support than I thought and I’m so

ready to truly be me and not have to hide!” (supportive)

13

Health professional “So the tech that does the laser hair removal is extremely nice, and very familiar with the transgender MtF

community. . . She’s the third person I’ve come out to so far. She congratulated me and gave me nothing but

smiles.” (supportive)

11

Past acquaintance “That awkward moment where you take a delivery to someone who you knew back in high school. You know,

before transition.” (support unknown)

10

Romantic interest “Anyways I ended up meeting a boy there that was pretty cute who was giving me lots of looks and we ended

up spending all night together. Until he had to give a friend a ride home. Well he gave me his number, and

knew if I was going to text him I would have to come out to him right away. Of course you could tell he was

really interested until I told him. Then he immediately told me he wasn’t interested. (not supportive)

8

Child excerpt not included 4

Church excerpt not included 3

Partner excerpt not included 3

Ex-partner excerpt not included 2

Instagram excerpt not included 2

Twitter excerpt not included 2

Total 362a

Blog post quotes were not traceable via Google search as of March 2019, and so were left as is; otherwise, they would have been paraphrased to reduce trace-

ability to maintain bloggers’ privacy.
aTotal is not a sum of the rows because many disclosure posts had multiple audiences.

Journal of the American Medical Informatics Association, 2019, Vol. 26, No. 8-9 751

D
ow

nloaded from
 https://academ

ic.oup.com
/jam

ia/article-abstract/26/8-9/749/5497782 by guest on 05 Septem
ber 2019



nearest neighbors, logistic regression, naı̈ve Bayes (Bernoulli, Multino-

mial, and Gaussian), random forest, and support vector classification.

AdaBoost was most accurate, with an accuracy of 0.80 and area under

the curve of 0.62 when applying 10-fold cross-validation. When applied

to the 20% of data held out as a test set, the classifier’s accuracy was

0.79 and the area under the curve was 0.71.

Next the classifier was applied to the full dataset. The model

classified 798 posts as positive, which OLH then manually coded to

ensure that the computational coding did not include false positives.

Manual coding identified a total of 362 posts describing recent

transgender identity disclosures. The high number of false positives

indicates that the model had poor specificity, a limitation that was

addressed by manually coding all positively classified posts. Unfor-

tunately, it is not possible to identify false negatives. For each trans-

gender identity disclosure post, the disclosure audience(s) was

manually identified by reading the post. This resulted in a set of 20

disclosure audience types (Table 1).

Measuring social support
Each post that described a transgender identity disclosure was man-

ually coded for whether the poster described their audience as being

supportive in response to the disclosure (yes, no, partially, or un-

known). This was later simplified to a binary variable (supportive

response or not) after observing few posts in the partially and un-

known categories.

Understanding relationships among sentiment,

transgender identity disclosures, and social support
As a result of the previous 3 steps, each post in the dataset had the

following information:

1. variables measuring the post’s positive and negative sentiment

(dependent variables)

2. whether or not the post described a recent transgender identity

disclosure (0 or 1) (independent variable)

Additionally, transgender identity disclosure posts had a mea-

sure of the following:

3. whether the disclosure received a supportive response (0 or 1)

(independent variable)

Regression models were built to understand the relationships be-

tween these variables. Using posts as the unit of analysis, all models

include average sentiment in the time period after the post (1-30

days, 1-90 days, or 1-180 days) as the dependent variable. Indepen-

dent variables included whether or not the post described a trans-

gender identity disclosure, and whether or not the disclosure

received a positive response. The models also included all available

control variables, including blogger demographics and characteris-

tics of posts. An important control variable was previous sentiment,

because a person’s sentiment one month is highly predictive of their

sentiment the next month; yet even after controlling for this, the var-

iables of interest still show significant effects. Because the data did

not meet the assumptions required for linear regression, robust lin-

ear regression was used instead.63 Data cleaning procedures are de-

tailed in Haimson.53

Mapping the gender transition process into stages
In previous work, qualitative analysis (based on content analysis of

Tumblr blog data and interviews with bloggers) was used to map

the gender transition process into stages based on van Gennep’s limi-

nality framework.51,53,64 In section R.1, all transgender identity dis-

closures are grouped together, regardless of audience. However,

because it is more informative to separate out different types of dis-

closures, this is done according to the primary disclosures that re-

lated to the liminality stages:51,53,64 family (section R.2) and

Facebook (section R.3). Facebook disclosures were generally mass

disclosures to a broad set of people in one’s Facebook network.51

Figure 1. Methods summary.
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RESULTS

Results are summarized in Table 2. Table 3 provides clarity about

the organization of models in Table 4. Results are detailed in Table 4

and sections R.1-R.3.

Data description
A total of 41 066 Tumblr posts by 240 bloggers were analyzed. Posts

had an average word count of 71.38 (median ¼ 33, SD ¼ 124.70).

On average, each blogger posted 367 total text posts that met the data

collection criteria (median¼ 76, SD ¼ 814.46), had been blogging for

almost 2 years (mean¼ 646 6 515.19 days, median¼ 530 days), and

posted roughly 3 times/week (mean ¼ 0.43 6 0.67 posts/day). Demo-

graphic data were found in blog descriptions. Most (95%) promi-

nently stated or implied their gender and many (42%) stated their

age. When placing each blogger into the most prominent gender cate-

gory that they displayed on their blog (with the caveat that some iden-

tified as more than 1 gender), bloggers in the dataset were 47% trans

men, 46% trans women, and 7% nonbinary (including genders such

as genderqueer, genderfluid, and agender). Like Tumblr more

broadly,65 the sample skewed young, with 63% in the 18-24 years of

age range, 30% were 25-34 years of age, 7% were 35-44 years of age,

and <1% were 45 years of age or older. Most bloggers (93%) did not

specify race or ethnicity. Posts were from 2009 to 2017 (collected in

Figure 2. Data collection and inclusion criteria flow diagram for Tumblr transition blogs.

Table 2. Sentiment changes over time on average after transgender identity disclosures

Short Term Long Term

All disclosures (R.1) (regardless of audience) decreased negative sentiment if supportive response increased positive sentiment

Family disclosures (R.2) increased negative sentiment increased positive sentiment

Facebook disclosures (R.3) increased positive sentiment if supportive response increased positive sentiment if supportive response
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early January 2017), with 83.7% being from 2014 to 2016. Bloggers

described on average 1.51 transgender identity disclosures each

(median ¼ 0, SD ¼ 2.98, maximum¼ 18).

R.1 Transgender identity disclosures are followed by decreased

negative sentiment and increased positive sentiment

Support moderates the relationship between disclosure and negative

sentiment in the short term. Model 1 (Table 4) shows that posts

describing transgender identity disclosures with supportive

responses were followed by fewer negative emotion words in the

month following.

Disclosure is associated with increased positive sentiment in the

long term, whether or not the audience was supportive. Models 5

and 6 (Table 4) indicate that posts describing transgender identity

disclosures were followed by more positive emotion words in the 3

and 6 months following, but support was not a moderating variable.

That is, people saw positive sentiment increases in the 3 and 6

months post disclosure whether or not their disclosure audience

responded supportively. Outcome measures are the percentage of to-

tal words in a post that were part of the LIWC positive emotion dic-

tionary. Thus, Model 5’s coefficient of 0.25 means that posts in the

3 months after transgender identity disclosures had on average

0.25% more positive emotion words. This level of detail will not be

provided for each result, but is provided here to help readers inter-

pret Table 4.

R.2 Family disclosures are followed by increased negative sentiment

in the short term, but increased positive sentiment in the long term

Here, the independent variable of interest is a binary indicator of

whether a post described a recent disclosure to a family member.

These involved either specific family members (eg, parent, sibling,

child, grandparent), or a mention of family more broadly (eg, “I

came out to my family today!”).

Family disclosures are associated with increased negative senti-

ment in the short term. Posts describing transgender identity disclo-

sures to family members were followed by more negative emotion

words in the month following, according to Model 7 (Table 4). Im-

portantly, support is not a significant moderating variable here; even

those who received supportive responses from family members expe-

rienced increased negative short term sentiment.

Family disclosures are associated with increased positive senti-

ment in the long term. Model 12 (Table 4) shows that posts describ-

ing transgender identity disclosures to family members were

followed by more positive emotion words in the 6 months following.

Again, support was not a moderating variable. Positive sentiment in-

creased whether or not people received positive responses after

disclosing to family members.

R.3 Facebook disclosures with supportive responses are followed by

increased positive sentiment

Because transgender identity disclosures on Facebook are pivotal

transition experiences,51 it is important to understand how people’s

sentiment changed afterwards. The independent variable of interest

is a binary indicator of whether a Tumblr post described a Facebook

disclosure.

Support moderates the relationship between Facebook disclo-

sures and positive sentiment in the short term and long term. Models

16-18 (Table 4) indicate that posts describing transgender identity

disclosures on Facebook with supportive responses were followed

by more positive emotion words in both the short term and the long

term. None of the models show a direct significant relationship be-

tween Facebook disclosures and sentiment. It makes sense that a

person’s sentiment after disclosing on Facebook is highly dependent

on the response that they receive from their networks. Support from

one’s network is an important moderating variable impacting peo-

ple’s positive sentiment after disclosing on Facebook.

DISCUSSION

Sentiment patterns throughout gender transition
This work contributes an understanding of the patterns in sentiment

changes throughout gender transition. Figure 3 displays a concep-

tual visualization of these patterns over time (with disclosure pro-

cesses as mapped onto van Gennep’s 3 liminality stages64 from

previous work).53 During the separation stage, which involves dis-

closures to family members, sentiment decreases on average. Next,

during the transition stage, which involves transgender identity dis-

closures on Facebook, positive sentiment increases. Finally, in the in-

corporation stage, people’s positive sentiment increases to a level on

average higher than their pretransition positive sentiment. The ini-

tial decreased sentiment shown in Figure 3 is likely a result of the

combined impact of family disclosures along with minority stressors

like discrimination, harassment, and disapproval from others, and

personal discomfort in the early stages of transition. The long-term

increased positive sentiment may correspond to people’s bodies and

social identities aligning with their internal gender, and others in

their lives becoming more supportive over time. These 2 effects hap-

pen in tandem, but results indicate that (on average) in the short

term the difficulties and negative aspects of transition are

more prominent, while in the long term, transition’s positive benefits

prevail.

The short-term increase in negative sentiment after transgender

identity disclosures to family members is a surprising result, given

that previous literature has found that disclosures are generally fol-

lowed by positive emotions.27,66,67 Yet similar results to the present

study’s have been found in the context of schizophrenia disclosures

on Twitter68 and emotional writing:69 in many cases, sensitive dis-

closures are followed by increased negative affect in the short term,

and the positive benefits of disclosure take time to occur. Interview

data as part of the larger study53 indicate that increases in negative

sentiment after family disclosures are sometimes in response to fam-

ily disclosures. However, negative sentiment increases likely also re-

late to the broader difficulties and minority stressors5 that people

face during the stage of gender transition that corresponds tempo-

Table 3. Description of regression models

Time Period After Post Averaged for Outcome Variable

Days 1-30 Days 1-90 Days 1-180

Sentiment measured in outcome variable Negative sentiment Models 1, 7, 13 Model 2, 8, 14 Model 3, 9, 15

Positive sentiment Model 4, 10, 16 Model 5, 11, 17 Model 6, 12, 18
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rally to family disclosures,53 or fear and anxiety about upcoming

disclosures to other audiences. Considering this result in the context

of overall gender transition sentiment patterns provides clarity.

Implications for healthcare providers and transgender

individuals
Understanding patterns in sentiment over time during gender transi-

tion has important implications for helping a marginalized

population—transgender people—find the support they need at the

times they most need it, which can decrease the substantial mental

health disparities this population faces. This study’s results provide

important information for (1) mental health professionals who wish

to support their patients and (2) those beginning gender transitions

themselves to anticipate changes in emotional state and put support

structures in place to help navigate the difficult stages of transition.

Mental healthcare providers working with transgender popula-

tions, and transgender people in transition, are both important audi-

ence for patterns identified by analyzing sentiment over time via

social media data. Understanding patterns in advance can help men-

tal healthcare providers better anticipate and provide the support

their patients need at the times most needed. Health professionals

are often some of the very first people to whom trans people disclose

their trans identity.53 Blotner and Rajunov26 argued that medical

professionals serving transgender patients can use social media to

understand trans lived experiences, and the present argument takes

this a step further. Equipped with average transition sentiment tra-

jectories harnessed from social media data, therapists could help

their patients know what to expect, and ensure that they have suffi-

cient support structures in place, as they embark on gender transi-

tion and transgender identity disclosures to the people in their lives.

In addition to the aggregate work presented here, future work could

examine how people’s individual sentiment patterns may be identi-

fied from social media to provide important insights for their mental

healthcare providers. Researchers can be the important links

between social media data, populations in need of support, and

healthcare professionals capable of providing support when pro-

vided this extra information. That said, privacy protections must be

ensured in every step of the data access chain from patients’ social

media data to healthcare professional’s data access.

Implications for researchers
This research highlights how social media is an important data

source for quickly and effectively understanding sentiment over time

throughout gender transition, a method which researchers can also

apply to other populations facing health disparities, such as racial or

ethnic minorities and people with specific medical conditions. Other

studies10,16 have primarily measured emotional well-being through-

out gender transition using research methods like surveys and inter-

views. Though computational methods have accuracy

limitations,39,61 self-reported data sources like surveys and inter-

views can be faulty given people’s difficulty recalling emotion in the

pasts70 or even interpreting their current emotional state. Addition-

ally, traditional research procedures, particularly in longitudinal

studies, are often costly and time consuming, both for researchers

and for research populations. Marginalized populations, particu-

larly those facing health disparities, may not have the time, energy,

or willingness to fill out surveys or participate in interviews or longi-

tudinal studies. If done ethically, harnessing social media data—a

data source that populations are already using to chronicle their

experiences—is a powerful method for uncovering insights about

sentiment over time.

Limitations
Beyond the accuracy limitations of computational sentiment detection

methods and machine learning disclosure detection methods noted

above, several other limitations arise. First, this study’s sample is not

representative of all transgender people. Next, there may have been

additional control variables that confound the relationship between

sentiment and disclosure. Finally, while it is important to understand

average sentiment patterns over time during gender transition, it is

also important to consider that averages are only that: averages. The

data in this study represent people’s lives, meaning that patterns are

messy and involve high variance from person to person. Average sen-

timent over time patterns are complicated by the intersecting identity

facets and other life transitions that people experience at the same

time as their gender transitions. Those who have other stigmatized

identity facets, and who experience other distressing life changes

along with gender transition, have very different sentiment trajecto-

ries over time. This is an important area to examine in future work.

CONCLUSION

This research shows how people’s sentiment changed over time on

average during gender transition using social media data. Findings

suggest that while overall people’s positive sentiment increased

throughout transition and after disclosing their transgender identity

to the people in their lives, sentiment was highly dependent on

whether people received support from their disclosure audiences. In

the short term after family disclosures (during the difficult early

stages of transition), people’s sentiment suffered whether or not

their families were supportive. Gender transition is difficult, yet un-

derstanding sentiment patterns in advance can help to mitigate some

of these difficulties. This work provides empirical knowledge so that

people in transition, along with their mental health professionals

and support structures, can have foreknowledge of the patterns

likely to occur, and thus can be prepared to improve the experience.

In this way, this research contributes to lessening the mental health

disparities widely faced by transgender people.
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